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ABSTRACT 

The purpose of this investigation was to examine the early relaxa- 
tion of the population density distribution of a thermal hydrogen plasma. 
The system of rate equations describing the transient behavior of all 
quantum levels was used and solved numerically.   Three hypothetical 
hydrogen plasmas were studied,  each with an excitation temperature of 
10, 000°K.    Two of the plasmas differed only by the transition probabil- 
ity of the quasi-metastable (2SyJ eigenstate, whereas the third case used 
a different initial population density distribution.    The plasmas were 
used to study the fundamental consistency of the mathematical model, 
the existence and location of the critical level, relaxation to the quasi- 
steady state,  and a quantitative study of the effects of the quasi-metastable 
level on the excited state population density distribution.    The results 
show that the model is consistent with fundamental theory under strong 
collision dominance and that the critical level does exist at that level 
predicted by earlier investigators.   The quasi-metastable state has a 
significant effect on the excited state population density distribution,  and 
a simple dual-based Maxwell-Boltzmann distribution is shown to accu- 
rately predict the results.    The computations involved terminate at a 
real plasma time of 1 x 10"5 sec. 

in 
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SECTION I 
INTRODUCTION 

The development of high-temperature devices which will create a 
high-energy, partially ionized gas (plasma) as a laboratory tool has in- 
creased the importance of theoretically predicting the number density 
distribution of excited states of the plasma components.   Without this 
theoretical grounding, experimental observations will never be removed 
from a purely phenomenological basis.   The many physical processes 
which generate a specific number density distribution of excited states 
in a given plasma are strongly coupled so that it is extremely difficult 
to calculate this population density distribution on anything other than 
a statistical basis. 

Two principal models have been used to describe the population den- 
sity distribution of a plasma:  the local thermodynamic equilibrium (LTE) 
model and the corona model.    Each model uses a different mechanism 
for the equilibrating process; the LTE model uses collisions between 
atoms and electrons as the major vehicle for transitions of an atom 
from one energy state to another, whereas the corona model uses 
collisional ionization and radiative recombination as the dominant mech- 
anism (Ref.   1).    The LTE model is useful only when the electron density 
is sufficiently high to maintain strong collisional dominance, whereas 
the corona model applies to the low density situation. 

In 1962,  Bates, Kingston, and McWhirter (Ref.  2) examined the de- 
tailed equations describing the time rate of change of each energy state 
available to the plasma in terms of the change rate for each individual 
mechanism.    These detailed eigenstate rate equations contain all the 
physical processes involved in the transient plasma population density 
distribution and,  in the respective limits, reduce to either the LTE or the 
corona model.   Even so, the mathematical description is still quite com- 
plicated,  and solution is difficult.    However, the resultant system of 
equations does lend itself to simplification for application to many prob- 
lems of physical interest.   In these applications, many of the time de- 
rivatives can be set to zero and computation is considerably simplified. 
This is called the quasi-steady-state approximation and is the problem 
to which Bates, Kingston, and McWhirter (Ref.  2) addressed themselves 
in the development of their collisional-radiative recombination (CRR) 
model.   Other investigators (Refs. 3 and 4) used the same approximation 
in their studies. 

The present work, which is an extension of preliminary results re- 
ported in 1967 (Ref.  5), is a detailed study of the transient behavior of 
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a high temperature hydrogen plasma without the quasi-steady-state re- 
striction.    Thus, it will be possible to determine if the quasi-steady 
condition which can be imposed on physical grounds is a natural result 
of the rate equations or if the imposition of this quasi-steady state is 
a mathematical condition which is unnatural to the system.   By obtain- 
ing the fully transient solution to the rate equations, it is also possible 
to examine in detail the transition to the quasi-steady-state distribution 
and to determine if there are any radical departures from theory during 
that portion of the decay.    Lastly, if the quasi-steady state is a natural 
result of the rate equations, the transient solution will indicate the length 
of time before this condition is established. 

Included in the study of the convergence to the quasi-steady state 
must be the examination of the fundamental consistency of the model. 
A result of statistical mechanics is that an ensemble of particles in 
which collision processes are dominant will exhibit a Maxwell-Boltzmann 
(MB) distribution among the allowed energy states (Ref,  6).   Coupled 
with the fact that many of the collisional rate coefficients in the mathe- 
matical model depend for their value on a Maxwellian energy distribu- 
tion of the exciting particle, then one would expect the transient solution 
to yield an MB-like distribution among the excited states.    Any contra- 
diction would tend to discredit the solution, or the model, or both. 

The eigenstate rate equations include all the important physical 
phenomena governing the population density distribution.    By examining 
detailed terms in the transient solution, it will be possible to study such 
general properties as equilibration of various specific processes,  cou- 
pling between several processes,  and the subsequent gross properties 
of the excited state relaxation.   These studies will provide valuable in- 
sight into the fundamental properties of high excitation temperature 
gases beyond the specific one studied here. 

The existence of a critical level is an important concept in the study 
of excited state number density distributions in plasma.    The critical 
level, by definition,  is the lowest atomic level which exhibits Saha equi- 
librium with the free electron density (Ref. 2).   It has been studied in 
the past by equating ionization and recombination rates and then estab- 
lishing that level in which they were equal as the critical level (Refs.  7 
and 8). 

If the critical level does indeed exist (as one would intuitively expect), 
then the location should be a natural result of the solution to the full set 
of rate equations.    Further, the transient behavior of the critical level 
can be studied; e. g., do all eigenstates above the critical level suddenly 
exhibit the Saha density,  or is it truly a transient situation in which the 
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various levels exhibit the condition at a different time?   The solution to 
the full set of eigenstate rate equations should answer these questions 
with a minimum of preconceptions imposed on the model. 

Specifically, this study will examine two hydrogen plasmas,  iden- 
tical except that one has a metastable atomic level whereas the other 
does not.    (A metastable atomic level is an eigenstate in which the 
dipole optical selection rules do not allow spontaneous transition to 
deplete that particular level.   In the case of hydrogen, there are no 
dipole forbidden transitions but the  2Si/ level has a very small prob- 
ability of an optical transition and will thus be considered as metastable 
in this discussion.)   There has been experimental evidence (Ref.  9) that 
the presence of a metastable level in some atomic plasmas will signif- 
icantly affect the observed spectral line intensities.    In order to include 
the metastable level in the calculations,  it is necessary to include angular 
momentum in the quantal description of the plasma and the subsequent 
mathematical model.   It is in the selection rules on the angular momen- 
tum that the condition causing the metastability usually arises.    To the 
writers' knowledge, this is the first study of the rate equations which 
goes into sufficient depth to include the angular momentum.    This is 
not too surprising, however, because of the serious lack of knowledge 
concerning the angular momentum dependence of the collisional terms. 
Indeed, only the angular momentum dependence of the spontaneous radia- 
tive transition probabilities is known with any degree of confidence.    In- 
cluding the angular momentum dependence would not be justified were 
it not for the need to study the specific effects of the existence of the 
metastable level. 

At the same time that the effect of the metastable atoms on the 
spectral intensities was studied (Ref.  9), Brev/er and McGregor pro- 
posed a simple dual-based MB distribution to describe the excited state 
population distribution which appeared to be consistent with the experi- 
mental results.    Since the eigenstate rate equations contain all of the 
important physical mechanisms indigenous to a thermal plasma,  and 
therefore should yield physically correct results, one of the objectives 
of this study is to test the validity of the dual-based MB distribution in 
this application. 

In a recent article (Ref.  10), Gordiets, Gudsenko,  and Shelepsin 
also attacked the transient solution of the eigenstate rate equations. 
Their concern was with the problem in which the excitation temperature 
experiences a sudden step-function change,  and they did not include the 
angular momentum.    Since the work reported herein is concerned with 
the afterglow problem in which the excitation temperature is constant, 
no direct comparisons can be made.   However, their work shows 
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essential agreement with that reported in 1967 (Ref. 5) and other un- 
reported work by these authors. 

SECTION II 
MODEL 

2.1  THEORETICAL MODEL 

The collisional-radiative recombination model of an ionized gas 
as developed by Bates, Kingston,  and McWhirter (Ref. 2) describes 
the quasi-steady-state behavior of an optically thin, hydrogenic plasma. 
In the CRR model, conditions were assumed to have adjusted to the point 
that the subsequent transient behavior of the plasma is characterized 
solely by the transient behavior of the ground state and the free electron 
population density.   However, the complete set of differential equations 
from which the CRR model is developed will describe the transient be- 
havior of the population densities of all states as well as the continuum 
density, which is the object of the present investigation. 

It will be assumed that population changes occur only as a result 
of radiation or of collisions involving free electrons.    The problem is 
thus restricted to plasmas in which the electron velocity distribution 
is Maxwellian and the mean electronic velocity is so much greater than 
the mean velocity of the heavy particles that the latter will be considered 
motionless (Ref.  11). 

Each mechanism causing a change in the population density of a 
particular eigenstate can be characterized by a rate coefficient.    The 
instantaneous rate by which the level is being populated or depopulated 
by a given mechanism is the product of the rate coefficient and the num- 
ber densities of the participants. 

Five important mechanisms by which the population density of a 
particular level can change are considered: 

1,   Radiative Recombination.    In this process, an ion captures a 
free electron into the rth electronic state with the emission of 
a photon: 

M+ + e" ■* M(r)   + hv 
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This reaction will be described by a coefficient, ß(r), so that 

dn(r) + 0y   \ -^— - n     nc  ß<rj (i) 

is the instantaneous rate of filling of the rth state caused by 
radiative recombination.    In Eq.  (1), n(r) is the population 
density of the rth state, n+ is the ion density, and nc is the 
electron (continuum) density. 

2.   Spontaneous Radiative Transitions.    For this mechanism, a 
neutral atom in the rth quantum state relaxes spontaneously 
to the sth quantum state with an attendant emission of radia- 
tion: 

M(r)  ■» M(s)   + hv 

This reaction is described by the Einstein transition proba- 
bility, A{r, s), so that the instantaneous rate for this process 
is 

MSl - „(r,   A(r,s) 

3.    Two-body Internal Transition.    This is a reaction in which a 
neutral atom in the rth state collides with a continuum elec- 
tron and makes a transition to the sth state with the necessary 
energy: 

M(r)   + e~ -*■ M(s)  + e~ 

This reaction will be described by K(r, s) and the rate by 

^Bls). = n(r)        K(rs) (3) 
dt 

4.   Three-body Recombination.    For this, a singly ionized atom 
has an encounter with two continuum electrons.    The ion cap- 
tures one of the continuum electrons into the rth eigenstate 
and the excess energy is carried off as kinetic energy of the 
second electron rather than radiative emission: 

M+  + e~ + e~ -> M(r)   + e- 
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The rate constant for this process is K(c, r),  and the rate is 
given by 

*g± = nc  n+ K(c,r) (4) 
at *- 

5.   Two-body Ionization.   This is the inverse of three-body 
recombination in which a continuum electron collides with 
and ionizes a neutral atom in the rth eigenstate: 

M(r)  + e"~ -> M+ + e"" + e~~ 

This reaction is characterized by K(r, c) and the rate is 

^^ = -nc  n(r)  K(r,c) (5) 

In addition, there are two other mechanisms which may be important 
in atomic plasmas.    These are photon absorption in which a photon 
emitted by process (1) or (2) above is absorbed before it leaves the 
plasma, and induced emission in which emission from an excited 
atom is enhanced by the presence of other radiation of the proper 
frequency.   Neither of these effects is significant in this approxima- 
tion because of the low densities considered. 

The time differential equation for the population density of some 
state characterized by the principal quantum number p and angular 
momentum quantum number SL will then be the summation of all these 
effects, or 

dn^'£)     =    -n(p,^)   n, K(p,c) -n(p,£)   n      2    K(p,q) 
dt c c  q=i 

q-1 
-n(p,£)     2       2    A(p,£;   q,m) 

q<p m=0 

+n       2^  t  1 2       2     n(q,m)   K(q,p) (6a) 
C p^ q=l   m=0 

q^p 
q-1 

+       2 2 n(q,m)   A(q,m;   p,jg) 
q=p+l       m=0 

+n     n+       1L±A    K(c,p)   +nc  n+       «+A     ß(p) 
C P2 C P2 
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In the summation of A(p, JL; q, m), the values are such that the value is 
zero if the optical selection rule is violated, i-m fc ±1. 

In this equation, the first three terms describe the depopulation of 
the (p, 8.) quantum state by collisional ionization (Eq.  (5)), two-body in- 
ternal collisional transitions (Eq.  (3)),  and spontaneous radiative de- 
composition (Eq.   (2)), respectively.    The last four terms describe the 
filling of the (p, 2) state via two-body internal collisional transitions 
(Eq.  (3)), spontaneous radiative transitions (Eq.  (2)), three-body recom- 
bination (Eq.  (4)),  and radiative recombination (Eq.  (1)), respectively. 
The (2J2 + l)/p^ factor arises as a weighting factor for those terms for 
which the angular momentum dependence is not known. 

There will be a similar equation for each eigenstate of the atom, 
and the instantaneous population density of each state depends on the 
density of all other levels.    In addition, the continuum density, nc, 
enters the equation as a product with other population densities.    Thus, 
there is an infinite,  rectangular,   coupled,  and nonlinear system of 
equations.    However, by considering all of space being filled with this 
plasma, with no density gradients and no sources or sinks so that the 
total number of nuclei remains constant and that for hydrogen the contin- 
uum and ion densities are identical, then the equation of particle conser- 
vation 

Z  n(p,£)   +  n     =  constant /g^) 

added to the rectangular system of equations represented by Eq.  (6a) 
causes the system to become square and,  at least in principle,  deter- 
minate.    The solution to this system will give a complete temporal de- 
scription of the population density of every quantum level available to 
the atom and the continuum density. 

As can be seen, the limit of the applicability of the system of 
equations (Eq. (6)) to physical problems lies in the ability of the vari- 
ious definitions of the rate coefficients to accurately describe the popu- 
lation density changes due to the various processes.    In this simple 
form, it is obvious that any further physical mechanism which might 
affect the number density distributions can be taken into account merely 
by describing the process by an equation similar to Eqs.  (1) through (5) 
and adding the term to Eq.  (6a) with the proper algebraic sign. 

It should be noted again that the system of equations (Eq. (6)) is 
descriptive only for those cases in which the sole mechanism for the 
population density distribution is transitions of the electronic level. 
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There is no provision within the present scope of the problem for spa- 
tial variations in the population densities. 

2.2 REDUCTION OF THE THEORETICAL MODEL 

If the plasmas of interest are confined to those in which the popu- 
lation densities of high atomic levels are considerably less than that of the 
continuum, the system of equations may be truncated at some finite 
quantum number with little sacrifice in the accuracy of the model. 
Thus,  in effect, the plasma having an infinite number of allowable 
states has been replaced by one which has only a finite number of 
allowable states.    This is not quite as artificial as it at first seems 
because the eigenstate energies get closer and closer together approach- 
ing the continuum.    With the various levels lying very close together and 
the excited electrons physically removed in distance from the nucleus, 
adjustments in the population densities of the upper levels caused by 
interaction with the continuum take place readily.    There is little dis- 
cernible effect on neighboring levels and virtually no effect on the 
lowest lying levels caused by these adjustments.    Since these higher 
level population densities are insignificant, numerically, with respect 
to the continuum and since the magnitude is determined almost solely 
by interactions with the continuum, they can be neglected.    Note that 
this is, in effect, postulating the existence of the critical level.    How- 
ever, if it is an impossible condition, then the solution to the full sys- 
tem of rate equations should so indicate, regardless of where the sys- 
tem is truncated. 

2.3 COLLISIONAL-RADIATIVE RECOMBINATION MODEL 

A further simplification made by other investigators (Refs.  2, 3, 
and 4) is the quasi-steady-state approximation in those plasmas in 
which the population density of the ground state is very much larger 
than that of all higher states.    An equilibrium configuration among 
these upper states is established almost immediately,  and because of 
this equilibrium, the rate of change of the number densities is very 
small compared with the rate of change of the ground state.    Mathe- 
matically this means that, in the system of equations represented by 
Eq.  (6), the derivatives of all states with p > 1 can be set to zero. 
The rate of growth of the ground state is then numerically the same 
as the decay of the continuum or electron density. 

Thus, the system of equations (Eq.  (6)) now becomes one differen- 
tial equation for the ground state and a system of homogeneous algebraic 

8 
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equations for the excited states.    These algebraic equations are obtained 
by setting the time derivatives on the left side of Eq.  (6a) to zero.    The 
equation for the ground state can be further simplified by writing 

dn(l) 2        .     ,.. — a nc    -  S n(l)   nc (7) 

where a and S are the CRR coefficient and collisional-radiative ioniza- 
tion coefficient, respectively, described by Bates, Kingston, and 
McWhirter (Ref.  2). 

The system of equations can be reduced so that a and S can be 
expressed only as functions of nc, T, and atomic parameters.   The 
determination of a and S was the problem to which Bates, Kingston, 
and McWhirter addressed themselves. 

2.4 CRITICAL LEVEL 

A simplification even more fundamental than the quasi-steady-state 
approximation is that of the concept of the critical level (Ref.  2).    As 
defined in Section I, the critical level is the lowest atomic level that 
exhibits Saha equilibrium with the continuum.   If any atomic level, p, 
does exhibit Saha equilibrium, then its population density is given by a 
modified Saha equation (Ref.   12): 

/       2     \   3/2 

n(P)   =        fe-RT "a"  p2   eXP<VkT> (8) 
l       e     / 

where h is Planck's constant, k is Boltzmann's constant, me is the 
electronic mass, T is the excitation temperature, and Ip is the ioni- 
zation potential of the pth state.    If in the developing solution of the 
rate equations some level does exhibit Saha equilibrium, then subse- 
quently its time rate of change can be expressed by the time derivative 
of Eq.  (8).    It must be realized at this point that, for this substitution 
to be valid, the transitions induced by interactions with the free elec- 
trons must dominate radiative mechanisms. 

The existence and location of this critical level is most important 
to subsequent calculations.    Levels above it will have their population 
densities given by the comparatively simple relationship (Eq. (8)) which 
in turn negates the necessity of more involved calculations.    If the criti- 
cal level occurs sufficiently near the ground state as has been indicated 
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(Refs.  7 and 8), the system of rate equations (Eq.  (6)) can be substan- 
tially simplified. 

2.5  DUAL-BASED MAXWELL-BOLTZMANN DISTRIBUTION 

If an atom has a metastable atomic level, then an electron in this 
particular energy level can be removed only by collisional mechanisms. 
This means that in a large aggregate of such atoms, the metastable level 
would act as a pseudo ground state and the population density of that level 
would appear abnormally high.   Brewer and McGregor (Ref.  9) proposed 
a simple model to describe the population densities of those levels above 
the metastable level which are collision dominated.   They proposed that 
the population densities of these levels were given by the sum of two 
MB-like distributions.   One of these uses the ground-state population 
of the atom for its base,  and the other uses the metastable level popu- 
lation for its base.   Or simply, 

Nn = No gn  exP(-VkT)  + Nm F1 exp[-(En-Em)/kT]       (9) 

where N is the population density, g is the statistical weight, the sub- 
script n indicates the particular level of interest, o the ground state, 
and m the metastable state.    It should be noted that Nm, rather than 
being the total number density in the metastable level, will be the excess 
number density beyond that given by the ground-state-based MB distri- 
bution.    That is 

N
m  =   <Nm> "  N«  Sm  exp(-Em/kT) fim 

total 

It should also be noted that NQ in Eqs.  (9) and (10) is the actual popu- 
lation density of the ground state and not the total particle number den- 
sity.   The NQ is related to the total particle density by the partition func- 
tion in the usual manner. 

SECTION III 
RATE COEFFICIENTS 

Although the rate coefficients described briefly in Section 2. 1 are 
not the objects of this study, they are a critical component of the model. 
The value of the rate coefficient is related to the probability that a 

10 
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particular type of transition will occur and that the magnitude will indi- 
cate the relative importance of the various mechanisms.    In this study, 
no attempt was made to obtain fundamental information concerning the 
rate coefficients for the hydrogenic plasmas,  but rather the same 
sources were used as Bates, Kingston,  and McWhirter (Ref.  2) to facil- 
itate comparison of results. 

3.1   EINSTEIN PROBABILITIES, A(p,q) 

The Einstein spontaneous transition probabilities were evaluated 
using the radial matrix elements for hydrogen listed by Green, Rush, 
and Chandler (Ref.   13).    For this calculation,  the probability of spon- 
taneous transition from the state (p, i) to the state (p', £') is given by 

A(Pl|;   p.|.)   = g^vf *»*(/; ,1)   e2    2<  p|.r|   pi>2{11) 

3hCJ zz       x 

where h is Planck's constant,  C is the speed of light,  v is. the frequency 
of the emitted radiation, e is the electronic charge, and a0 is the first 
Bohr radius.   The matrix elements 

00 

<  p'i'|r|   pi >  =       J      R(p\r)   r R(p,£)   r dr 

are listed in their paper for angular momentum values through a prin- 
cipal quantum number of 20.    The term R(p, £) above denotes the hydro- 
gen radial wave function. 

Since the probabilities are readily available by using Green,  Rush, 
and Chandler (Ref.   13) and Eq.  (11) as well as many other sources 
(Refs.  14 and 15, for example) and because of the large bulk of the data, 
the values used in this study are not listed.   Rather, the reader is 
referred to any of the above mentioned sources. 

3.2 RADIATIVE RECOMBINATION, ß(?) 

The radiative recombination coefficients, ß(p), for hydrogen were 
evaluated using a series expansion approximation: 
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6(p)   = B 
x       x2 

_6^ 
3 x 

24 

B = JL a4a 2   [  IM- 
3h3 o     1   3kTc 

1/2 

x = 157890 
(12) 

where a is the fine structure constant and R is the Rydberg wave num- 
ber to the actual values which can be obtained from Seaton (Ref.   16). 
The values used in this study are presented in Table I (Appendix II). 

3.3  COLUSIONAL RATE COEFFICIENTS, K(p,q), K(p,c), K(c,p) 

The collisional rate coefficients for hydrogen are obtained by inte- 
grating the collisional cross sections over the MB energy distribution 
available for the excitation.   This is (Ref.  17) 

K(p,q)   = 8TT m~1/2   (2TTkT)"3/2 f Q(p,q)   exp(-E/kT)   E d E 

VEq (13) 

where Q is the cross section for the collision. 

The Gryzinski method for determining the cross sections (Ref.   18) 
appears to be the best available for these determinations and has been 
used by most investigators.    In the most useful form, the expression for 
collisional excitation is 

K(p 

00 

,q)  - C    f   D exp  |- 157890(q2-p2)y)dy 

p q     T 

D  = -   [2-a+y(l+4a)](y-l)1/2   (a+l)1/2 

: i/2 ; ; ,3/2 * y < a+1 

3a (a+y) 
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D =   t-3a+y(3+4a)]  y1/2 a+1 

3(a+y)3/2 

C- BirV . -1/2   (27rkT)-3/2 g2 . 
q(q -P ) 

a 2^~2" 
q -p (14) 

Gryzinski's expression for the ionization cross section 

«(«)  - i     5X"6 ' X > 2 
3    (x+l)a/2V? 

M-£g fe]3/2,x<2 gw 3x 1X+ 

E2 
El 

where E2 is the energy of the incident electron and E^ is the energy of 
the bound electron, yields for the collisional ionization rate coefficient 

DO 

K(p,c)   -  *££  (2.KT)-3/2 /   D exp   (- i™2S*U 
V^ 1 \ P T    / 

r- 1      t3/2 

n     4V2     x-1* ,   x < 2 

_  _ 1     (5x-6)N/x 2 

3     fx+l)
3/2   '       ~ (x+1) (15) 
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The inverse collision integrals are given by 

KCq.p)   =  4 exp     157890(q2-p2)     R(pq)?   q  >  p 

q P q T 

for deexcitation from the qth to pth state,  and 

K(c,p)   = h3   (27rmkT)-3/2  p2  exp A57890\       R(pc)     (16) 

for recombination from the continuum to the pth state. 

The values used in this study were computed in the program and 
are presented in Tables II and III for K{p, c) and K{c, p), respectively. 
The values of K(p,q) are presented in Table IV. 

3.4 DISCUSSION OF THE RATE COEFFICIENTS 

It is apparent, from an examination of the tables of rate coeffi- 
cients, that their values fluctuate over wide ranges.    However, to de- 
termine the relative importance of each of the various processes that 
a rate coefficient characterizes, it is necessary to examine not the 
coefficients themselves, but the entire term in the rate equations, 
Eqs.  (1) through (5).    This requires a more complete quantitative de- 
scription of the population densities in the plasma.    These in turn, de- 
pend on solution of the entire set of equations, which is the object of 
this work.    Therefore, a more detailed discussion of the relative im- 
portance of the processes as applied to the specific problems being 
studied here will be deferred to Section V, where the additional data 
are introduced. 

SECTION IV 
NUMERICAL ANALYSIS 

General analytic methods are not available for nonlinear coupled 
systems such as those represented by Eq.  (6).   However, there are a 
number of numerical methods which can be applied easily with the use 
of a digital computer. 

14 



AEDC-TR-69-156 

The particular technique used was chosen because the terms in- 
volved in the solution have a direct physical meaning without separate 
computation as would be the case with less direct methods.   That is, 
most quantities of physical significance appear directly in the calcula- 
tion rather than occurring implicitly as in other methods.   It has the 
drawback,  however,  of potentially requiring more computer time to 
obtain the solution than would be necessary by other means. 

4.1   THEORY 

By noting that the population density and its derivatives for a given 
quantum level must be single-valued, finite,  and continuous throughout 
all time, the population density can be written in terms of its time- 
dependent Taylor's Series: 

n(p,i)   =no(p,£)   +    2     1   <*  1  nCp,!)  1 (t-t  )* 
° i=l  Xl       dt<x> ° 

*-*o 

This expression is valid provided the series converges, which will be 
governed by the derivatives as well as the magnitude of (t-t0). 

Although any physical process is convergent, the problem being 
dealt with is the mathematical representation of a physical process, 
and this representation may or may not be convergent.    However,  if 
the function n(p, A) is well behaved, the Taylor's Series representation 
will be convergent.    The functional form of n(p, H) is not known,  only a 
representation of derivatives.   However, examining succeeding time 
derivatives of the system represented by Eq.  (6) shows that the ith 
derivative will be dependent only on products and sums of lower de- 
rivatives of the system, that no functional singularity is apparent, and 
that the function should be well behaved and thus the series should be 
convergent. 

In the above discussion, referring to the system of equations, 
Eq.  (6), it was assumed that an infinite number of terms can be carried 
in the series.   Realistically, this is not the case, but rather a finite 
series is used, such as 

n(p.l)   =  n0(p,J)   +    I       jU d(i)n(p,D   j (t.t)i 
° i=l      lm dt(l)        / 

t"t0 (17) 
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where now I must be chosen so that errors introduced by neglecting 
those terms for i > I can be considered as insignificant in the calcula- 
tion.    Or, conversely, some I can be chosen,  and in turn, a t can be 
chosen so that the truncated terms are negligible.   Thus by choosing 
some tmax so that the terms for i > I are insignificant compared with 
those terms for i < I, then the finite series can be used to give a suffi- 
ciently accurate solution for n(p, $.) for any t < tmax. 

Hence,  it is possible to find the solution for n(p, JL) in time by using 
the system of equations, Eq.  (6), to find all higher derivatives at t = 0, 
to examine these derivatives to determine what At = t - t0 must be to 
ensure convergence,  and to evaluate the series to find n(p, &) for all 
p and SL considered.   Then it is possible to return to the system, to 
recompute the derivatives for this new distribution, to find a new At, 
and to repeat the calculations until all desired information is acquired. 
Thus, the actual transient problem is considered as a series of initial 
value problems; the solution over one time interval provides the initial 
value for the next time interval. 

4.2 APPLICATION 

From the discussion in the preceding paragraph, the larger the 
value of I, the larger the factor (t-t0) may be.   However, there will 
naturally be an upper limit because of machine limitations, both from 
the aspect of size as well as the sheer magnitude of the numbers in- 
volved.    Similarly, there will be a limit to the number of quantum states 
which can be considered because of the size of the machine utilized in 
the solution. 

The number of terms retained in the series will have a direct in- 
fluence on the real plasma time.    Therefore, the program to solve the 
system of equations, Eq.  (6), was written in order to use an arbitrary 
number of derivatives to a limit of I = 10.   The actual number of terms 
kept for the evaluation via Eq.  (17) was then determined by the magni- 
tude of the derivatives so that no attempt was made to use a derivative 
which would cause machine overflow.    By having the number of terms 
in the series, Eq.  (17), thus determined, the factor (t-t0) was chosen 
to yield convergence.    It should be noted that, for the particular prob- 
lem studied here, the condition I = 10 was never realized,  but rather 
the magnitude of succeeding derivatives was such that the series trun- 
cated at smaller values of I. 

As discussed in Section 2. 2, the system of equations, Eq.  (6),  can 
be truncated above some quantum level without significantly affecting the 
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solution.    One of the objectives of this study was to examine any rapid 
adjustments in the number density distributions between the uppermost 
atomic levels.  .This would indicate considering a large maximum quan- 
tum number.   However, the size of the computer used dictated that a 
principal quantum number of 10 would be the maximum number which 
could be considered.    By including the angular momentum, the system 
of equations, Eq.  (6), becomes a 56 by 56 system. 

This should not be a serious limitation on the principal quantum 
number for illustration of the upper level adjustments however.    Draw- 
in (Ref.  3),  in his study of the quasi-steady-state solution,  showed that 
truncation of the system at a quantum level of 10 should cause no signifi- 
cant numerical error.    If the critical level established itself at the pre- 
dicted level (Refs.  7 and 8), the maximum quantum number 10 will in- 
clude enough states above the critical level for examination of detailed 
processes. 

4.3  EXTRAPOLATIONS 

Since the CRR model depends on the first time derivatives of the 
excited states being zero with respect to that of the ground state, it is 
expected that the transient solution will converge to this CRR model as 
the upper states come into equilibrium with the continuum. 

As this equilibrium condition is approached, the actual solution 
will become quite flat in time,  and it should be possible to approximate 
the solution by some curve fit over comparatively long periods of time. 
Such an approximation will considerably speed computation of results. 
Consequently, this device was used in the actual solution of the problem. 
By using values of the populations and derivatives from the system solu- 
tion to determine the slope and intercept, the population densities were 
extrapolated by straight lines.    These extrapolations were never allowed 
to extend forward in time far enough to change any population density by 
more than 5 percent, however.    After each extrapolation, the full system 
was used so that the perturbations introduced by the extrapolation could 
damp out. 

Another technique utilized to speed computations was the use of the 
Saha equation {Eq.  (8)) to compute the time derivatives of those states 
which exhibited Saha equilibrium.    This, of course, subsequently en- 
sured that those levels would satisfy Saha equilibrium, but periodically 
the full model was used as a check.    Invariably, the Saha equilibrium 
density for that level was found to satisfy the full system within a small 
error. 
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4.4  REPORTING OF DATA 

The discussion to this point has included all angular momentum 
values which the hydrogen atom may have.    The problem was solved 
including these angular momentum distinctions, even through expres- 
sions for the angular momentum dependence of the collisional rate 
coefficients are not available.    The only place in this study that this 
dependence has anything other than a purely statistical effect is in the 
spontaneous radiative transition probabilities, A(p, q).    Further, be- 
cause of the conditions of the plasmas studied, this distinction has no 
quantitative effect except on the two lowest quantum levels,  and their 
subsequent effect on the plasma distribution as a whole.    Consequently, 
the data which are reported in the following section are shown as 
though there were no angular momentum distinction except for the 
aforementioned eigenstates. 

SECTION V 
RESULTS OF COMPUTATIONS 

The numerical solution to the system of eigenstate rate equations 
was examined to satisfy several objectives: 

1. To determine if the fully transient solution will yield a popu- 
lation density distribution which is MB for strongly collision 
dominated levels.    If this is not the case, the mathematical 
model must be revised before meaningful physical interpre- 
tations can be applied to the results.    Once one is satisfied 
with the fundamental consistency of the model, the solutions 
may be examined to provide physical insight into the mecha- 
nisms by which equilibration,  decay, and growth of the var- 
ious excited state population densities occur. 

2. To examine the existence and location of the critical level. 

3. To make a quantitative examination of the solution to the 
eigenstate rate equations for the metastable and nonmetastable 
case.   Also, the relative importance of the various terms in 
the rate equations themselves can be examined. 

4. To compare the time development of the population density 
distribution of the metastable atomic plasma with the time de- 
velopment of the atomic plasma with no metastability.    The 
subsequent effects of the metastable level on the radiation from 
a plasma and the lifetime of the plasma will be examined. 
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5. To examine the ability of the relatively simple dual-based MB 
distribution to reproduce the excited state population density 
distribution. 

6. To study the relaxation of the solution to the quasi-steady 
state and subsequent CRR model. 

5.1   FUNDAMENTAL CONSISTENCY 

Three cases (A, B, and C) were used in the calculations,  all at an 
electron temperature of 10,000°K and a total population density of 
2.6 x 1016 cm-3 (right-hand side of Eq.  (6b)) at a pressure of 0.001 
atm.   The continuum density for each case was chosen to be that which 
would be in Saha equilibrium with the ground state at that temperature. 
In cases A and B, the distribution among the upper states was chosen 
such that the population density of each state was one-half of that which 
would be given by an MB distribution.    In case C, the distribution was 
fully MB.    The distinction between cases A and B is the value of the 
spontaneous transition probability for the quasi-metastable (2,0) eigen- 
state.    Case A, which is the metastable case, used a transition proba- 
bility of 0, whereas case B used a fictitious transition probability of 
6 x 10° sec"1 for this level, thus effectively removing the metastability. 
Case C was similar to case A in this respect with a metastable level at 
(2,0). 

The differences in the initial distributions were chosen in order to 
facilitate checking the fundamental consistency of the solution.    For the 
electron temperature and continuum density chosen, the plasma should 
be collision dominated.    This may be illustrated by the collision fre- 
quency from the classical mean free path for an electron in hydrogen 
gas.    Cobine's expressions (Ref.   11) show that, for the conditions of 
this investigation, the electronic mean free path will be on the order of 
0. 5 cm with a resultant collision frequency of 1 x 10^3 encounters 
sec-1 cm"3.    This is to be compared with radiation terms which will be 
on the order 1 x lO1-* transitions sec-1 cm"3.    Thus,  case C, which 
started as an MB distribution,  should retain its MB-like character, 
whereas cases A and B, which were underpopulated with respect to the 
true MB distribution should rise in number density until they become 
like case C.    Also,  cases A and B should retain very similar number 
densities at least until times on the order of 10"° sec,  at which time 
radiative transitions begin to have an appreciable effect. 

Figure 1 (Appendix I) illustrates qualitatively the time development 
of the three cases for one of the eigenlevels above the metastable level. 
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This behavior was fairly typical of all upper levels.   There is no scale 
in Fig.   1 other than the relative positions of the three curves.    Impor- 
tant times are marked on that scale and are correct relative to the 
character of the three curves.    The important thing to note is that case 
A and case C develop to the same values of population densities for 
quite different initial distributions, whereas case B has started to de- 
part from these even though it had the same initial distribution as 
case A and retained, for all practical purposes, the same distribution 
as case A for small times.    Case C exhibited an MB character to its 
distribution throughout its decay.    This evidence, the convergence of 
the three cases for small times and the retention of the MB character- 
istics by case C, suffices to establish fundamental consistency of the 
mathematical model since, for ensembles which are collision dominated, 
statistical mechanics shows that the distribution should be MB (Ref.  6). 

Since cases A and C evolved to very nearly the same values for all 
densities and parameters while A and B differed much more significantly, 
the case C computation was terminated after a real plasma time of about 
1 x 10"? sec.   It should be noted that the relaxation time for A to become 
like C was about 10"10 sec.   The similarity between them suggests 
strongly that the plasma decays like an MB distribution and that a per- 
turbation that causes the plasma to be initially in a nonequilibrium con- 
figuration will damp out and the plasma will come to the equilibrium 
configuration very rapidly if the perturbation is not maintained.    Further, 
it indicates that, if there should happen to be a perturbational error 
somewhere in the calculations, the system would return to the true solu- 
tion path in a plasma time on the order of 10"^ sec, which was adjudged 
to be insignificant physically. 

5.2 CRITICAL LEVEL 

The critical level should make itself evident as the decay progresses. 
Case C, which was originally required to exhibit Saha equilibrium, re- 
tained that characteristic for the eigenstates with p > 4 throughout the 
extent of the computations.    Because of radiative effects, the levels be- 
low p = 4 departed from the Saha density after times on the order of 
10'9 sec. 

The upper levels of cases A and B, which were not initially Saha in 
magnitude,  approached this value monotonically, and once reached, the 
level decayed with the continuum, maintaining the population density in 
Saha equilibrium throughout the calculation. 
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In the time development of the population densities, the existence 
of Saha equilibrium occurred in the uppermost level first,  and then the 
highest level at which this occurred moved downward as time increased. 
Table V shows the time at which Saha equilibrium occurred for the var- 
ious levels for case A.    Case B exhibited approximately the same be- 
havior except that quantum level 4 reached Saha equilibrium at about 
1. 5 x 10"? sec.   To the extent of the present computations, the quan- 
tum level 3 has not exhibited Saha equilibrium for either case. 

It is interesting to note that the upper levels 6 through 10 showed 
Saha equilibrium almost simultaneously,  and the distinction in the times 
at which this occurs for these levels is probably mathematical rather 
than physical.   However, the lag between these levels and level 5 may 
be physically significant, and certainly the further three orders of 
magnitude before quantum level 4 exhibits the equilibrium is physically 
significant. 

The results indicated in Table V can be compared with the calcu- 
lations of Hinnov and Hirschberg (Ref.  8), who show that for electronic 
energies greater than 0.25 eV (approximately 2500°K), the quantum 
level 4 would be the critical level. 

From the preceding discussion, it is now apparent that the critical 
level concept, which is vital to simplification of the computations, is 
indeed valid and that the location is at the level predicted by Hinnov and 
Hirschberg (Refs.  7 and 8).   However, care must be exercised when 
using this concept in other calculations and laboratory experiments, for 
if a nonequilibrium situation exists at the beginning of the experiment, 
then it requires a physically significant time for the final critical level 
to establish itself.    The transient behavior of the critical level is about 
what would be expected.   The upper levels approach equilibrium much 
faster than the lower levels. 

5.3  NUMBER DENSITY DISTRIBUTION AND RATES 

As a quantitative illustration of the number density distributions 
and the rates involved in the computation, Tables VI and VII show the 
initial conditions for the two cases A and B along with the density dis- 
tribution at a plasma time of 1 x 10"^ sec when the calculations were 
terminated.   The fourth column in each table shows the rate with which 
each quantum level was changing at the time the calculations were termi- 
nated. 
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The effect of the metastable level is quite evident in these tables. 
Case A shows a distinct inversion of the population densities of the 
(2, 0) and (2, 1) levels at a real plasma time of 1 x 10"^ sec.    Further- 
more, from an examination of the decay rates in column 4 of Table VI, 
it appears that the inversion will tend to intensify as time progresses. 
The subsequent effect on the continuum density and excited state popu- 
lation densities is also apparent by the elevated values for case A com- 
pared with case B.   Note also that the rates of decay,  although quite 
similar,   show a tendency for case B to depopulate the upper levels at 
a slightly faster rate than case A, thus widening the difference in the 
population densities of the two cases.    This is even more noticeable 
by comparing the continuum density values and rates.   Here it is quite 
obvious that the plasma with the metastable atomic level is relaxing 
noticeable slower than the nonmetastable atomic level. 

More informative of the detailed processes involved is the exami- 
nation of the contribution of each individual mechanism involved in the 
decay as described (Eqs. (1) through (5)).   For this purpose, Tables 
VIII,  IX,  and X show time rates of change for each quantum level for 
each of the two cases and for the various physical processes considered. 
Columns Tl through T7 may be compared directly with the seven sep- 
arate terms in Eq. (6a).   By using the nomenclature of Tables VIII, IX, 
and X, Eq.  (6a) would be written: 

4J = -Tl - T2 - T3  + T4  + T5  + T6  + T7 dt 

for each (p, i). 

Table VIII is early in the computation when the upper levels are in 
a nonequilibrium configuration.    Table IX gives values iwhen the Saha 
equilibrium configuration is nearly established among the upper levels, 
and Table X allows comparison at the time the calculations were termi- 
nated.   The rates for the two cases were nearly identical at the times 
of Tables VIII and IX so there is only one entry for each element in the 
array. 

From quantum level 10, for example,  in Table VIII,  it is obvious 
that the term presenting the change in the population density via a colli- 
sion between a neutral atom and a continuum electron,  resulting in a 
change of energy level of the bound electron, is by far the largest of 
the effects.    But, since there is both a populating effect and a depopu- 
lating effect and since the initial distribution approximated an equilib- 
rium distribution for this effect (Maxwell-Boltzmann), these two effects 
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are in near equilibrium (T2 « T4). However, the terms representing 
change rates in population due to three-body effects are obviously not 
in equilibrium, with the continuum contributing to the level at roughly 
twice the rate that the atoms, within this level are being ionized 
(T6 «2 Tl). The other effects are small enough to be unimportant com- 
paratively. Conversely, from Table. VIII, level 2, it can be seen that 
radiation effects (T3) are quite competitive,  or even dominate the decay. 

Now,  an examination of quantum level 10 in Table IX shows that 
the internal population density changes are still in near equilibrium 
but that now the three-body terms are also in near equilibrium.    In 
fact, by examining the combination of these effects, it can be seen 
that the collisional terms are even nearer equilibrium.    However, the 
slight unbalance of the collisional terms still largely dominates the 
radiative effects. 

An examination of Table X, which compares the two cases at the 
time the calculations were terminated,  shows that the four major colli- 
sion effects are in very near equilibrium and, further, that they are in 
equilibrium to the extent that the unbalanced contribution to the depopu- 
lation of this state is due to spontaneous radiative transitions (T3).    The 
net effect of the collision terms is the population of the upper quantum 
levels through three-body interactions. 

An examination of Tables VIII,  IX,  and X illustrates the relative 
importance of various mechanisms in the plasma decay.    It is obvious 
that two-body interactions between the continuum and neutral atoms are 
the dominant process for population or depopulation of all but the ground 
state and that three-body interactions run a very close second.    But, 
the collision terms appear to have to dominate the radiative terms by 
a least three orders of magnitude before a particular level will exhibit 
equilibrium with the continuum.    This is evidenced by the fact that quan- 
tum level 4 is in Saha equilibrium, whereas quantum level 3 is not 
(Tables VI and VII).    It should be noted also that, for the number densi- 
ties used here, radiative recombination is singularly unimportant, being 
dominated by other processes by several orders of magnitude at all times. 

5.4  TIME COMPARISON OF METASTABLE AND NONMETASTABLE CASES 

In this section is presented the time development of case A 
(metastable) and case B (nonmetastable) for comparison of the popula- 
tion density distributions.    It should be repeated that, for these com- 
parisons, the initial conditions for the two cases are identical in every 
way except that case B had a fictitious transition probability of 6 x 10^ 
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sec"1 for the (2,0) eigenstate while the actual probability is very small, 
zero in this case.    All other atomic parameters are identical,  and thus 
the two cases are consistent for the comparison.   Any deviations in the 
subsequent solution will be solely due to the effect of the developing dif- 
ference in the metastable level on the rest of the distribution. 

Figures 2 through 4 show the time development of quantum levels 
3, 5, and 10 for the two cases over the period of time from 1 x 10 "6 
to 1 x 10"5 sec.    Figure 5 illustrates the continuum density over the 
same time range.   In these figures, the coordinate system is Cartesian, 
with time being the abcissa and population density the ordinate.   As is 
obvious from the figures, the population densities for case A, the 
metastable case, remain significantly higher than for case B, and the 
difference between the two is diverging as time progresses.    The two 
cases exhibit a difference in the number densities at a much earlier 
time than is shown in the figures, but there is no difference in the 
character of the curves. 

The particular quantum levels shown are indicative of all levels 
except, as would be expected, the ground state and the metastable state. 
The ground state, for both cases, has steadily populated although at 
different rates as can be seen in Tables VI and VII.    The metastable 
(2, 0) state is shown in Fig.  6.   Because of the large ranges of time and 
number densities involved,  Fig.  6 is not drawn to scale,  and the com- 
parison is largely qualitative with important quantitative features marked. 
The particular emphasis here is the physical effect of the metastable 
(2, 0) level on the excited state population density distribution. 

An examination of these curves {Figs.  2 through 5) shows that there 
is a slight flattening with increasing time and that there generally appears 
to a parabolic character to the curves.   This parabolic character was 
retained when the data were plotted on semilogarithmic scales although 
the curves were somewhat linearized.    Subsequently, the data were 
least-squares curve fitted in the semilog plane to an equation of the 
type 

1  +  a2 tV4  +  a3 tV2 (18) In n = a 

This equation was used to perform extrapolations for increasing time. 
Because of the highly qualitative form of the analysis of the existing 
curve and because of the errors inherent in extrapolation, extreme care 
must be exercised in how far the extrapolation will be valid. 
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For these extrapolations, since it is known that the upper levels 
exhibit Saha equilibrium with the continuum, each extrapolated level 
density along the extrapolated continuum density was compared with 
the corresponding Saha factor 

n 
P = '  h2 

n 2 

c 
2mn kT e 

3/2 

p2  exp(Ip/kT) 

(19) 

When there was more than a 15-percent deviation between the extra- 
polated values and the right side of Eq.  (19), the extrapolation was 
terminated. 

Figure 7 shows the time development of quantum level 5 on a log-log 
graph from a time of 1 x 10-8 to 1 x 10"4 sec.    The extrapolation de- 
scribed above was used in the region above 1 x 10~5 sec.   This behavior 
was typical for all the upper quantum levels.   As can be seen, the two 
population densities are, for all practical purposes, the same until 
about 5 x lO"? sec when they begin to diverge.   By a time of 1 x 10"^ 
sec, the two differ by roughly 10 percent,  and the divergence is accel- 
erating.   One of the interesting aspects of this is that the radiation from 
a gas with a metastable atomic level would be noticeably more intense 
than radiation from a gas which did not have this metastable atomic 
level. 

Further, an examination of the decay rates in Tables VI and VII 
shows that the continuum is decaying faster in the case where the met- 
astable level is absent so that the upper levels, which remain in Saha 
equilibrium with the continuum,  are also decaying at a faster rate. 
Thus, the plasma with a metastable level would have a much longer 
lifetime than the plasma which does not have this metastable level. 
Although lifetime calculations are not attempted here,  it has been 
shown.experimentally (Ref.  19) that radiation from an argon plasma 
(argon has a metastable level) can be substantially quenched by mixing 
into the plasma gases which will accept the metastable energy in colli- 
sional processes with the metastable atom.    Consequently, when the 
population density of the metastable atom is depleted, the population 
density of the upper excited states is also depleted. 

Figure 8 illustrates in a Boltzmann plot the time development of 
the population density distribution for case A.    Both cases exhibited 
the same character on a plot of this kind.    Each line is for a selected 
time as marked.    Energy is in electron volts,  and the corresponding 
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quantum number is marked for reference.   It is obvious from this that 
the decay is MB in character and at a constant temperature.   This fig- 
ure graphically illustrates that quantum level 4 is the critical level be- 
cause all states above it fit the MB distribution with some unknown 
base, whereas those levels below quantum level 4 do not show the 
Boltzmann distribution. 

In summary, the data presented here have shown quantitatively that, 
for similar plasma conditions, the metastable atomic level will elevate 
the population density distribution compared with that in a nonmetastable 
plasma.    Hence, the lifetime of the afterglow is appreciably increased. 

5.5  DUAL-BASED MAXWELL-BOLTZMANN DISTRIBUTION 

As just described,  the levels above the critical level decay as an 
MB distribution, but with an undefined base.    Brewer and McGregor 
(Ref.  9) presented a simple model, described in Section 2. 5, to explain 
radiation from gases containing a metastable atomic level.    Subsequent 
to the termination of solution in the rate equations, the data concerning 
the first two atomic levels were used to compute two MB distributions, 
each at 10,000°K.   Table XI shows the results of these computations. 
Column 2 gives the results of the solutions to the rate equations; column 
4 gives the results of computing another MB distribution using the excess 
of the (2, 0) state in the rate equation solution as the ground state popu- 
lation density for the computation.    Column 5 represents the sum of 
columns 3 and 4, which is to be compared with column 2, and column 6 
gives the comparison.   As can be seen, the agreement between the rate 
equation solution and the other model is quite good,  particularly for 
those levels which are strongly collision dominated. 

The large deviations for the (2,1) state in columns 5 and 6 are 
easily explained.    This level is not collision dominated,   and radiative 
effects are very competitive with the collision effects.   The ability of the 
MB distribution to predict excited state population densities depends on 
purely collisional mechanisms for energy transferral.    Therefore,  any 
level which is not strongly collision dominated would be expected to 
deviate from this distribution. 

Figure 9 shows graphically a comparison between the rate equation 
solution and the dual-based MB model.    Because of the various computa- 
tional approximations used to speed the rate equation solution, Table XI 
and Fig.  9 show more disagreement than was actually present.    The 
approximations used in the rate equations solution would cause perturba- 
tional errors in the distribution which would always damp out when the 
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full system of rate equations was used.   Inevitably, when the full system 
of equations was used, this solution and the dual-based MB would con- 
verge.    Case B, the nonmetastable case, was also examined in light of 
this model although there is no basis for comparison and the results 
were nonsensical. 

5.6  CONVERGENCE TO THE CRR MODEL 

Bates, Kingston,  and McWhirter (Ref. 2) reduced the full system 
of rate equations in order to compute the collisional-radiative recombi- 
nation and collisional-radiative ionization coefficients (a and S of Eq.  (7), 
respectively).    The method used for the reduction was to set the time 
rates of excited state population densities to zero.    Thus the rate of 
growth of the ground state was numerically the same as the decay of the 
continuum.    These coefficients can be computed directly from the tran- 
sient solution.    If Eq.  (7) is considered, 

dn(l,0) 2       Q     /n   n. 
—dT a nc    - S n(1'0)   nc 

with a and S time independent on differentiation with respect to time, 
Eq.   (10) becomes 

2 
d n(2,0)   = 2 a ncnc - s[n(l,0)   nQ  + n(l,0)   nj 

where the dot denotes time differentiation.    The transient solution to the 
rate equations can now be used to generate a simultaneous set which can 
be solved for a and S.   The conditions required by the Bates, Kingston, 
and McWhirter solution for a and S were never reached during the calcu- 
lations because of the various approximations to speed computation. 
However,  during the course of the solution,  an artificial condition 
approximating that of Bates, Kingston,  and McWhirter was generated, 
and the a and S determined from this agreed well within the accuracy 
of the data reported by Bates, Kingston,  and McWhirter in their 1962 
paper (Ref.  2). 

Because the quasi-steady state was never allowed to develop to a 
sufficient degree for detailed comparison,  it is impossible to study this 
aspect of the rate equation solution in as much depth as would be desired. 
However,  some inference can be drawn from the results.    When allowed 
to progress normally, the first derivatives of the excited state population 
density tended monotonically toward zero.    Even when there were 
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perturbations in the distribution which could have allowed an instability 
to develop, this tendency toward zero was retained.    This implies that 
the quasi-steady state will be a natural result of the solution to the set 
of eigenstate rate equations. 

It is impossible to assign a definite time when the derivatives be- 
come small enough for the quasi-steady state to be approximated.   How- 
ever, in case C, the true MB distribution, this quasi-steady state had 
not been established after 5 x 10"9 sec when the Saha relation was used 
to reduce the system of equations.   Indications are that times in excess 
of 1 x 10~8 sec would be required for this condition to be established. 

SECTION VI 
CONCLUDING REMARKS 

The purpose of this study has been to examine the transient behavior 
of a theoretical hydrogen plasma using the collisional-radiative recombi- 
nation model and to learn from the behavior of this plasma some general 
characteristics of a decaying plasma applicable to other gases.    In partic- 
ular, a comparison of the transient behavior of two similar plasmas, dif- 
ferent only in the Einstein radiative transition probability of the (2, 0) 
atomic level, was made.   The results of this study are summarized as 
follows: 

1. The rate equations offer a solution which shows MB-like decay 
if the collisional terms largely dominate the radiative as is re- 
quired from statistical mechanics. 

2. The critical level does indeed exist and at the level predicted 
by Hinnov and Hirschberg's analysis (Refs.  7 and 8). 

3. Saha equilibrium is established among the upper levels at 
physically insignificant time (~10-^^ sec), but the above- 
mentioned critical level is not established until a physically 
significant time (—lO-? sec). 

4. The presence of a metastable level in a decaying plasma def- 
initely elevates the population density of the states above it, 
causing, in effect, the plasma to be longer lived. 

5. The population density of the upper levels can be predicted 
easily, and to a high degree of accuracy, by the dual-based MB 
distribution (Ref.  9). 
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6. Solution of the rate equations does indeed reduce to the simple 
model proposed by Bates, Kingston,  and McWhirter (Ref. 2), 
but it is difficult to place any definite criteria on the applica- 
tion of the model from the present solution.    Indications are 
that the quasi-steady state will not be established until a plasma 
time has elapsed which is significant compared with measure- 
ment time. 

7. Any perturbations in the plasma that would cause a slight non- 
equilibrium configuration will damp out in a time that is small 
compared with typical measurement times at the temperature 
of this solution. 

The transient solution to the full set of Eq.  (6) has quantitatively 
verified many techniques and substitutions which can be used to simplify 
the solution.   These should be utilized in any future study to facilitate the 
solution.    Although the system solved here has been quite large, the use 
of, in particular, the Saha equation will reduce the system to a much 
more manageable one, leaving indeterminant only those levels below 
the critical level for those times of physical significance. 

A study of the transient solution to the rate equations offers a multi- 
tude of possibilities for further worthwhile investigations.   First, 
although the present study establishes the validity of the model on theo- 
retical grounds, the model and its solution needs to be further tested 
experimentally to establish its applicability.    The present system of 
equations, Eq.  (6), has been developed only for hydrogenic gases; a 
corresponding model for some of the rare gases such as helium or argon 
would greatly illuminate the behavior of decaying plasmas.    It would be 
quite easy also to include the effect of absorption of emitted radiation 
which is always a possibility when considering a physical plasma. 

Although the study here was an afterglow problem (constant exci- 
tation temperature), the model provides the means to investigate the 
problem in which the excitation temperature is not constant but varies 
in some manner.    Also,, the spatial terms to describe diffusion and three- 
dimensional flowing gases with attendant coupling to the temperature and 
total density could, in principle, be included.    These additions would be 
necessary for direct comparisons with most laboratory experiments. 

The model is most useful in providing a means whereby the physical 
effects of the various rate parameters inherent in the formulation can be 
studied.    Hence, the understanding of plasmas can be greatly benefitted 
by numerical studies of the various conditions which can be generated. 
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TABLE I 
RADIATIVE RECOMBINATION COEFFICIENT, j8(p) 

p 
3           1 |3(p),   cm    sec"1 

1 1.949 x 10"13 

2 2.437 x 10-14 

3 7.220 x 10"15 

4 3.046 x 10-15 

5 1.559 x 10"15 

6 9.025 x 10"16 

7 5.683 x 10-16 

8 3.807 x 10"16 

9 2. 674 x 10"16 

10 1.949 x 10"16 

TABLE II 
TWO-BODY IONIZATION COEFFICIENT, K(p,c) 

p 
1 

K(p, c),  cm3 sec"1 

1 6.066 x 10"16 

2 2.070 x 10-9 

3 1.012 x 10-7 

4 6.512 x 10"7 

5 2.014 x 10'6 

6 4.289 x 10"6 

7 7.255 x 10"6 

8 1.055 x 10"5 

9 1.387 x 10"5 

10 1. 702 x 10"5        1 
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TABLE III 
THREE-BODY RECOMBINATION COEFFICIENT, 

K(c,p) 

p K(c,p)/nc,  cm6 sec-1 

1 1.833 x 10-30 

2 1.800 x 10"28 

3 2.211 x 10"27 

4 1. 174 x 10"26 

5 3.977 x 10"26 

6 1.005 x 10-25 

7 2.061 x 10"25 

8 3.631 x 10"25 

9 5.736 x 10-25 

10 8.369 x 10'25 
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TABLE IV 
TWO-BODY INTERNAL TRANSITION COEFFICIENT, K(p,q) 

o 
n 

In 

CT> 

1 2 3 4 5 6 7 8 9 10 

l 0 8  711   x   IO-9 8.031   x IO"10 1   705  x IO"10 5.318  x  IO-11 2.082  x   IO"11 9.481   x  IO-12 4.814  x  IO-12 2.653  x IO"'2 1.551  x io"'2 

2 Z.S08  x IQ"1 3 0 3.076 x IO"7 3.661   X IO"8 9.311   x   IO"9 3.302  *   IO"9 1.422  X   10~9 li 970 x  IO-10 3.752  x IO"10 2  168  x IO"10 

3 5.806  x io-15 
7  724   x   IO-8 0 2.402  x .o-6 

3.048 x  IO-7 8  364  x   IO-8 3.167  x  IO-8 1.441   x  IO"8 7.391   x IO"9 4   133   x IO"9 

4 1.017  x ID"15 7.586 x  10~9 1.782  x IO"6 0 9.332  x  IO-6 1.274  x   IO"6 3.716  x   10"' 1 .463 x   IO-7 C  887  x IO"8 3  641  x IO"8 

5 3.473  x io-16 
2.11.3  x  1U-9 2.755  x IO"7 1.022  x IO"5 0 2.122 x   IO-5 3.517  X  10"'' 1.083  x  10"b 4.451   x IO"7 2.163   g IO"7 

6 1.615   x IO"16 8.895  x  IO-10 8.975  x io-H 1 .683  X IO-6 2.520  x  IO"5 0 3.455  x   IO-5 6.835  x   IO-6 2.296 x IO"6 9 94B  x IO"7 

7 8.911   x IO"17 4.641  x  10~10 4.118  x IO"8 5.855  x IO"7 5.060 x  IO"6 4.187 x  IO"5 0 4.685  x  10—r' 1.067  x IO"5 3.HH2  x IO"6 

8 5 480 x IO"'7 2.755  x  IO"10 2.268  x IO"" 2.792  X IO"7 1  887 x  IO"6 1.003 x   IO-5 5.674   x   IO-5 0 5.731   x IO"5 1.453  x IO"5 

9 3.820  x IO"17 1.783  x  IO"10 1.399  x IO"8 1.579  x IO"7 9.319 x  IO"7 4  049 x  IO"6 1.553  x  10"S 6 888 x  IO"5 0 6.598  x IO"5 

10 2.537  x IO"17 1.226 x 10~10 9.305  x ..- 9.933  x IO"8 5.387 x  IO-7 2.087 x   IO-6 6.723  x  IO-*1 2.078 x  in-5 7  850  x IO"5 0 
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TABLE V 
TIME AT WHICH SAHA EQUILIBRIUM IS ESTABLISHED, CASE A 

Quantum Number Time,  sec 

10 1. 7 x 10"10 

9 1.8 x 10"10 

8 1.9 x 10"10 

7 2.2 x lO-10 

6 3.2 x 10"10 

5 5.1 x lO-10 

4 3.0 x 10"7 

3 

2 

1 
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TABLE VI 

INITIAL AND FINAL POPULATION DENSITY DISTRIBUTION, CASE A 

> 
m 

n 
■ 
H 
70 
■ 

00 

± 

Quantum 
Number 

Initial 
Population 

Density x  1010, 
atoms cm~* 

Final 
Population 

Density x 1010, 
atoms cm "3 

Final 
Rate x 1015, 

atoms cm-"* sec"* 

1 2406740.0 2477281.0 47008.0 

2,0 8.7 10.1 -276.6 

2,1 26.2 7.9 -332.5 

3 8.8 9.0 -27.8 

4 7.3 8.0 -8.1 

5 8.0 8.9 -5.8 

6 9.4 10.6 -5.9 

7 11.4 12.8 -6.7 

8 13.9 15.5 -7.9 

9 16.7 18.7 -9.5 

10 19.8 22.2 -11.3 

Continuum 283130.2 212595.0 -46316.0 



TABLE VII 
INITIAL AND FINAL POPULATION DENSITY DISTRIBUTION, CASE B 

CO 

Quantum 
Number 

Initial 
Population 

Density x  1010, 
atoms cm"3 

Final 
Population 

Density  x  1010, 
atoms cm"3 

Final 
Rate x 1015. 

atoms cm'S/sec"1 

1 2406740.0 2489118.0 51247.0 

2,0 8.7 2.2 -120.1 

2,1 26.2 6.8 -356.1 

3 8.8 7.8 -25.9 

4 7.3 7.1 -7.9 

5 8.0 8.0 -5.8 

6 9.4 9.4 -5.9 

7 11.4 11.4 -6.8 

8 13.9 13.8 -8.1 

9 16.7 16.6 -9.7 

10 19.8 19.8 -11.6 

Continuum 283130.2 200779.0 -50689.0 
o 
o 



TABLE VIII 

DETAILED RATES* AT 1 X 10"15SEC 

o 

Quantum 
Number 

Tl x 1020 

Two-Body 
lonization 

Depopulation 

T2 x 1020 

Two-Body 
Internal 

Depopulation 

T3 x 1016 

Spontaneous 
Transitions 
Depopulation 

T4 x 1020 

Two-Body 
Internal 

Population 

T5 x 1016 

Spontaneous 
Transitions 
Population 

T6 x 1020 

Three-Body 
Recombination 
Population 

T7 x 1016 

Radiative 
Recombination 
Population 

1 0.0004133 0.1760 0.0 0.008885 17087.1 0.0004161 156.26 

2,0 0.005122 0.2415 0.0** 
524.6 

0.2631 22.22 0.01022 4.883 

2,1 0.01537 0.7246 1643.5 0.7893 308.79 0.03065 14.65 

3 0.2520 6.831 87.84 6.835 45.36 0.5018 5.788 

4 1.3389 31.80 21.93 31 .80 12.70 2.664 2.442 

5 4.537 97.44 9.133 97.44 4.80 9.027 1.250 

6 11.47 215.7 4.907 215.7 1.168 22.82 0.7234 

7 23.52 380.75 4.236 380.8 1.070 46.77 0.4556 

8 41.44 567.6 1.994 567.6 0.5366 82.41 0.3052 

9 65.46 704.4 1.408 704.4 0.2344 130.18 0.2144 

10 95.52 480.8 1.090 480.7 0.0 189.95 0.1563 

n 

4 

In 

'■"Each entry expresses a time rate of change, atoms cm"' sec-*. 

**The top number is for case A and the bottom number for case B. 
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TABLE IX 

DETAILED RATES* AT 5 X 10"10 SEC 

Quantum 
Number 

Tl x 1020 

Two-Body 
Ionization 

Depopulation 

T2 x 1020 

Two-Body 
Internal 

Depopulation 

T3 x 1017 

Spontaneous 
Transitions 
Depopulation 

T4 x 1020 

Two-Body 
Internal 

Population 

T5 x 1020 

Spontaneous 
Transitions 
Population 

T6 x 1020 

Three-Body 
Recombination 
Population 

T7 x 1016 

Radiative 
Recombination 
Population 

1 0.0004132 0.17597 0.0 0.07617 1914.8 0.0004157 156.2 

2,0 0.004259 0.2008 o.n** 
436.3 

0.4365 39.97 0.01021 4.880 

2,1 0.01272 0.5999 1361.1 1.309 559.2 0.03062 14.64 

3 0.4443 12.04 154.1 12.41 88.13 0.50134 5.784 

4 2.589 61.49 42.40 61.52 25.04 2.662 2.440 

5 8.923 191.63 17.97 191.58 9.497 9.017 1.249 

6 22.67 426.2 9.698 426.1 4.293 22.797 0.7230 

7 46.5S 753.7 8.388 753.5 2.1198 46.73 0.4553 

8 82.08 1124.4 6.744 1124.22 1.064 82.32 0.3050 

9 129.72 1395.9 2.792 1395.6 0.4648 130.0 0.2142 

10 189.3 952.9 2.162 952.5 0.0 189.8 0.1562 

*Each entry expresses a time rate of change, atoms cm"3 sec-1. 

**The top number is for case A and the bottom number for case B. 
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TABLE X 
DETAILED RATES* AT 1 X 10"5 SEC 

01 
to 

Quantum 
Number 

And 
Case 

Tl x 1019 

Two-Body 
Ionization 

Depopulation 

T2 x 1020 

Two-Body 
Internal 

Depopulation 

17 T3 x 10 
Spontaneous 
Transitions 
Depopulation 

T4 x 1020 

Two-Body 
Internal 

Population 

T5 x 1017 

Spontaneous 
Transitions 
Population 

T6 x 1019 

Three—Body 
Recombination 

Population 

T7 x 1014 

Radiative 
Recombination 
Population 

1  A 1   B 
0.00319 
0.00303 

0.136050 
0.129102 

0.0 
0.0 

0.035352 
0.174086 

562.1069 
616.4612 

0.00176 
0.00148 

8810.3 
7858.2 

2.0 J 0.04441 
0.00929 

0.209432 
0.043814 

0.0 
134.1824 

0.204209 
0.171833 

2.2075 
2.0024 

0.04324 
0.03643 

275.3 
245.6 

2.1 5 0.03473 
0.02808 

0.163806 
0.132451 

494.8042 
423.6390 

0.612629 
0.515501 

32.3293 
28.1709 

0.12974 
0.10928 

825.9 
736.7 

3  A J  B 
1.93794 
1.58493 

5.352209 
4.295474 

89.3109 
77.3088 

5.317253 
4.347325 

4.9156 
4.4371 

2.12458 
1.78963 

326.3 
291.0 

4  A 

*   B 
11.04610 
9.24707 

26.233615 
21.961066 

24.0793 
21.3432 

26.232723 
21.955530 

1.4154 
1.2602 

11.27947 
9.50124 

137.6 
122.7 

•   B 
37.91466 
31.86433 

81.424734 
68.431175 

10.1623 
9.0432 

81.404279 
68.407089 

0.5364 
0.4780 

38.21418 
32.18964 

70.5 
62.8 

•   B 
96.20751 
80.94325 

180.879494 
152.181212 

5.4794 
4.8814 

180.844591 
152.142358 

0.2424 
0.2160 

96.60791 
81.37749 

40.8 
36.4 

7  A 

B 
197.47552 
166.21158 

319.703919 
269.089021 

4.7370 
4.2217 

319.653880 
269.033928 

0.1196 
0.1067 

198.02116 
166.80375 

25.6 
22.9 

8  A 8   B 
348.J2996 
293.06771 

476.894613 
401.466204 

2.2315 
1.9891 

476.822421 
401.387595 

0.0600 
0.0535 

348.87261 
293.87219 

17.2 
15.3 

•  B 
550.12175 
463.15336 

591.962841 
498.379819 

1.5761 
1.4050 

591.864326 
498.272825 

0.0262 
0.0234 

551.12134 
464.23603 

12.1 
10.8 

»    B 
802.81945 
675.93561 

404.082342 
340.218022 

1.2205 
1.0880 

403.951388 
340.075967 

0.0 
0.0 

804.13997 
677.36581 

8.8 
7.8 

m 
a 
O 
H 
TO 
■ 
o- 

*Each entry expresses a time rate of change, atoms cm"3 sec"l. 



TABLE XI 
COMPARISON OF THE EIGENSTATE RATE EQUATION SOLUTION WITH THE 

DUAL-BASED MAXWELL-BOLTZMANN DISTRIBUTION 

üi 

Quantum 
Number 

n /c 
P bP 

Eigenstate Rate 
Equation 

P P 
First Uaxwell 
Boltzmann 

VBP 
Second Maxwell 

Boltzmann 

VKP 
First + Second 

Percentage 
Deviation 

1 2.4773 x 1016 2.4773 x 1016 0.0 2.4773 x 1016 0.0 

2,0 1.0096 x 1011 8.9990 x 1010 1.0966 x 1010 1.0096 x 1011 0.0 

2,1 2.6320 x 1010 8.9990 x 1010 1.0966 x 1010 1.0096 x 1011 285.0 

3 1.0007 x 1010 1.0059 x 1010 1.226 x 109 1.1285 x 1010 12.77 

4 4.9871 x 109 4.6719 x 109 5.963 x 108 5.2412 x 109 5.1 

5 3.5418 x 109 3.2759 x" 109 3.992 x 108 3.6751 x 109 3.8 

6 2.9311 x 109 2.7014 x 109 3.292 x 108 3.0306 x 109 3.4 

7 2.6128 x 109 2.4049 x 109 2.930 x 108 2.6979 x 109 3.3 

8 2.4245 x 109 2.2301 x 109 2.717 X 108 2.5018 z 109 3.2 

S 2.3026 x 109 2.1176 x 109 2.580 x 108 2.3757 x 109 3.2 

10 2.2193 x 109 2.0404 x 109 2.487 x 108 2.2894 x 109 3.2 
> 
m 
O 
n 
H 
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